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1. INTRODUCTION

¢It is well known that the extent of whitecap cover on the surface of a
sea is greatly influenced by the surface windspeed {Monahan (1971), Toba and
Chaen (1973), Wu (1979), Monahan and O'Muircheartaigh (1980)). Other
variables, such as sea surface temperature, also are important, but
windspeed action appears to play the dominant role. Whitecap cover can be
remotely sensed while windspeed cannot, so it is tempting to utilize the
relationship between windspeed and whitecaps to infer reasonable values for
the surface windspeed. To do so requires that the natural causative
relation of "whitecaps windspeed", quantitatively estimated from field data
as a statistical regression of (some measure of) white cap coverage on
windspeed, be reversed. It turns out that "natural" way of solving the
problem, namely by regressing whitecap cover on windspeed and then
inverting that regression relation, actually produces results that are
inferior to those from some other procedures. Since the indirect remote

sensing of windspeed is of operational interest, and since similar problems

may well arise in different remote sensing, and other, areas we present
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illustrative statistical data analyses of several sets of whitecaps-

windspeed data in this paper. We also include, in later sections of the

paper, further similar analyses based on simulated data. .
The general problem considered here is that of making inferences about

an unknown px1 vector X' from a single random observed qx1 response vector

Y'. The relationship between Y and X is calibrated with experimental data

(¥,,X;), 1 = 1,2,...,n where Y

X, are gqx1 and px1 vectors, respectively.

1’ =1
The case p = qQ = 1 has been extensively discussed in the literature, and
reference will be made below to several basic contributions to calibration
methods for this case. The situation when at least one of p,q is greater
than one is the subject of a comprehensive paper by Brown (1982).

Brown (1982) distinguishes two cases of interest: (a) when both X and

Y are random and (b) when only Y is random, and X can be fixed at prechosen

levels. The former case is called random calibration, and the latter

controlled calibration. The present paper is concerned solely with the

problem of random calibration, because the data of interest arises in an
observational context, and not from a controlled experiment.

A brief outline of the paper is as follows: In Section 2 we describe
several different plausible methods of point estimation in univariate
calibration. The methods described are subsequently applied to four data
sets, and their performance evaluated in Section 3. In Section 4 we
consider four interval estimates associated with the calibration problem,
and apply them to the data sets. The problem of multivariate calibration is
examined in Section 5., Several of the univariate methods are extended to

this situation and applied to the same four data sets, and to a further set

e te v Te e e e e Lt e et T - e e LTe L Te e LTe e e e P
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provided in Brown (1982). The application and an evaluation of the results

are presented in Section 6.

The later sections of the paper consider the same problems, but in the
context of a simulation study. Section 7 gives a brief description of the
objectives of the simulation study, Section 8 describes the point estimation

results, and Section 9 those related to interval estimation.

2. THE UNIVARIATE PROBLEM

The simplest version of the calibration problem, and the one most
extensively discussed, is the case p = q = 1, and where the calibration
curve is linear in both the parameters and the independent variable. The
situation of interest may therefore be described as follows: given two

random variables X,Y with the relationship

Y = o+ BX + ¢ (2. 1)

where, most classically e ~ N(O,oz), and given n independent pairs of
observations (Xi'Yi) on (X,Y) and a new observation Yo on Y, how do we
predict or estimate the corresponding value of X = X(yo). Numerous
solutions have been proposed, and their performances evaluated, Five of
these methods, in particular, have been applied in Section 3 to four data
sets, that relate whitecap cover to surface windspeed. The four methods
examined are these:

(i) the so-called classical method viz., estimate a,B in equation (2.1)

by least squares, and then for Y = the predicted value of X is

Yo
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X, = —, B =0, (2.2)

(11) Xrutchkoff (1967) suggested another estimator obtained by rewriting

(2.1) as

X = Y+ 68Y+ e (2.3)

~ -~

and obtaining least-squares estimators Y, § of ¥, §; the predicted value of

X, given ¥ = yo will then be

-~

XI = Y + Gyo ’

80 denoted because it is known as the inverse estimator.

Krutchkoff (1967) concluded by means of a Monte Carlo study that XI had

uniformly smaller mean squared-error (MSE) than the classical estimator ic.
In a later (1969) paper he concluded that this result was valid only within
the calibration range, whereas, in fact, the reverse result held outside
that range. Williams (1969) pointed out that for finite samples the MSE of
the classical estimator was infinite and that of the inverse estimator
finite, thus the use of the MSE for comparing these estimators is
unsatisfactory.

(1ii1). Lwin & Maritz (1980) proposed an alternative estimator based on

the fact that for this particular problem, the predictor of X, given by

0
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X*¥(y,) = E{le-yo} (2.4)

has minimum mean-squared error (provided o and a, B are all known). By
using consistent estimators of ¢, a, and 8 and by approximating the marginal
distribution of X with the corresponding empirical distribution function,

Lwin & Maritz showed that the estimator

Xp = = = (2.5)

will, subject to easily satisfied regularity conditions, tend to the optimal

estimator i*(yo) in mean square, where f is the error density function
{presumed known; otherwise estimated).
(iv) A Bayesian methodology was introduced by Aitchinson & Dunsmore

(1975). This method involves the assumptions that

(a) X,Y are Normal,

(b) Y - N(a + 8x,0°)
From these assumptions, it can be shown that the predictive distribution for
XO’ given n pairs of observations (Xi'Yi) and a single new observation Yo is

proportional to

}:(xi-;)z Ly
——-FT—} St{n-Z,m,(l*z);} (2.6)

- 1
St{n 1.x,(1¢;)

S |




where

=2
(x, - %) -
l - l + 0 m = Y - B(X - x)
K n S ! y 0
XX
v = n=2
and
2
vV = Syy B Sxx

and St{k,b,c} is the usual non-central Student's t-distribution with density

function given by

1
f(u;c’b’k) =
Be (3, (ke) /%

< (2.7)
1+(ke) 1(u-b)2}(k‘.l)/2

The constant of proportionality in (2.6) must be obtained by numerical
integration. The predictive distribution of (2.6) enables us to obtain

either point or interval estimates of XO' The point estimates examined are

-~

(a) mean of predictive distribution distribution, XME and (b) mode of

~

predictive distribution, XMO'

We have, therefore, five different estimators to be compared:

-~

(i) the classical predictor Xc
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(ii) the inverse predictor XI ;

(i11) the empirical predictor X; |

(iv) the mean of the predictive distribution XME

A

(v) the mode of the predictive distribution XMO

3. COMPARISON OF UNIVARIATE PREDICTORS

3.1 The Data
The five predictors were compared by applying them to four data
sets. The data sets consist of measurements of instantaneous oceanic
whitecap coverage (Y) and wind speed (X), and the object of the exercise is

the prediction of X, given a new observation YO. An initial inspection of

0
the data suggested lognormal distributions for both X and Y and a log
transformation gave an acceptable fit to a Normal distribution. Data points
for which whitecap coverage was 0.0 were excluded from the analysis for
several reasons, but particularly because it seemed reasonable to assume
that a zero whitecap coverage gave no additional information in relation to
wind speed over and above the conditional distribution of wind speed given
zero whitecap coverage. The data sets involved were the following:

Data set 1: Monahan (1971)

Data set 2: Toba & Chaen (1973)

Data set 3: JASIN experiment (1978), (Monahan et al. (1981))

Data set 4: Strex experiment (1981), (Monahan et al. (1981))

The number of (pairs of) non-zero observations in the respective data sets

were 43, 18, 37 and 78.
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3.2 Method of Comparison of Estimators

For each data set, we excluded one data point at a time and
obtained each of the five estimators based on the remaining data. We then
predicted the x-value of the excluded point, given the y-value of that
point, using each of the five estimators. This provided five predicted x-
values for each point in each data set. Finally, for each of the five
estimators and for each data set, we calculated the mean bias (MB) and the
mean-squared prediction error (MSPE) defined as follows for a given data

set:
MB = E(Xi - x,)/n (3.1)
~\2
MSPE = E(xi - x)/n (3.2)
where n is the number of points in the data set.

3.3 Results

The results are presented in Tables 1 and 2.
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TABLE 1

Bias of Estimators

Estimator
Data Set Xn X Xp XvE XMo
1 .0150 .0038 -.0039 .1969 -.0050
2 .0119 -.0068 -.0111 -.1110 -.0092
3 .0055 .0019 -.0151 .2831 .0080
4 -.0014 . 0004 .0030 .05 .0006

~

Table 1 shows that, in terms of bias, the estimator XME (i.e., the mean of

the predictive distribution of x) is uniformly the worst of the five
estimators and the inverse estimator xI almost uniformly the least biased.

~ -~

The estimator x is close to but slightly worse than, x

MO in terms of bias.

I

A two-way analysis of variance applied to the data of Table 1 yielded the

obvious results in terms of significance.
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TABLE 8.2

MSE of Various Predictors

X:

Estimator

E1
E2
E3
EY4
E5
E6
E7
E8

E1
E2
E3
EY
ES
E6
E7
E8

E1
E2
E3
EY
ES
E6
E7
E8

Normal Error: t, 3 d.f.
N = 20 N = 40 N = 80
1.04 0.95 0.98
95.13 141,63 19.67
0.97 0.92 0.90
1.00 0.95 0.97
0.99 0.95 0.95
0.96 0.88 0.85
0.93 0.87 0.83
1.03 0.95 0.98
0.57 0.49 0.51
1.32 1.02 1.03
0.51 0.u48 0.48
0.56 0.49 0.51
0.55 0.49 0.50
0.50 0.47 0.4y
0.50 0.u6 0.43
0.56 0.49 0.51
0.11 0.11 0.12
0.12 0.12 0.13
0.14 0.11 0.1
0.1 0.1 0.12
0.12 0.11 0.12
.16 0.12 0.1
0.17 0.12 0.1
0.11 0.11% 0.12
23
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TABLE 8.1

MSE of Various Predictors

X: Normal Error: Normal
p-squared Estimator N = 20 N = 40 N = 80
E1 1.02 0.95 0.92
E2 149.50 2063.04 174,14
E3 1.02 0.95 0.92
.1 EY4 1.01 0.95 0.92
ES 1.01 0.95 0.92
E6 1.07 1.00 0.96
E7 1.01 0.96 0.92
E8 1.01 0.95 0.92
E1 0.56 0.52 0.51
E2 1.51 1.21 1.04
E3 0.58 0.53 0.51
.5 E4 0.56 0.52 0.51
ES 0.56 0.52 0.51
E6 0.63 0.58 0.56
ET 0.62 0.56 0.53
ES 0.56 0.52 0.51
E1 0.1 0.10 0.10
E2 0.13 0.12 0.11
E3 0.15 0.12 0.11
.9 EU 0.1 0.10 0.10
E5 0.1t 0.10 0.10
E6 0.18 0.13 0.13
ET 0.18 0.13 0.13
ES 0.11 0.10 0.10

22
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The overall exercise was repeated for each of the following
combinations of assumptions regarding the forms of the distribution of X and

Y:

1. X: N(0,1) Error: Normal, mean 0O

2. X: N(O0,1) Error: t 3 d.f.

3. X: N(0,1) Error: Stretched Normal (Gaver
(1982))

4, X: t, 3 d.f., variance 1 Error: Normal, mean O

5. X: t, 3d.f., variance 1 Error: t, 3 d.f.

The error variance in each case was fixed so as to give the required
correlation between X and Y.
The results arising from each series of assumptions are presented

in Tables 8.1 through 8.5, respectively.

21




estimator. Therefore, certainly for large samples, we would expect the
performance of the classical estimator, which in general is not good, to
improve as p2 + 1, Note further that (see Appendix A) the estimator E8 is
virtually identical with E1 for any reasonably large sample size N, thereby
providing justification for the use of the estimator E1.
8.2 Simulation

The criterion of comparison of the different estimators is their

mean-squared error of prediction. The basic assumption is that we have two

random variables X, Y such that

Ely|x} = o+ 8X
(8.3)
2
V(y|x) = o
The study involves a number of different assumptions concerning the form of
the distributions of X and Y|X and these are detailed below. The (true)
values of a and B are taken to be 0 and 1, respectively. An initial random
sample of size n is generated from which the predictive relation is derived.
Then 100 further pairs of observations were simulated from the same true
model, and a prediction of the x-value corresponding to each y-value is made
using each of the eight estimators.
The above exercise was carried out 2000 times for every
combination of the following parameters:

Sample size N 20, Lo, 80

Squared corr. coefficient .1, .5, .9

o
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8.1 The Point Estimators

The estimators being compared are the five referred to above with

the following additions:

(a) Two alternative versions of estimator E3 [the Empirical Bayes
estimator] are developed, viz.,
E6: assuming the errors follow a Student t-distribution, and estimating its
variance in the standard manner and
E7: as in (i), except that we use a maximum likelihood estimate of the
variance of the t-distribution,

(b) A further alternative version of estimator E3 is derived by assuming

that the distributions of X and Y|X are N(ux,oi) and N(a+BX,05).

respectively. Then, by straightforward probability calculus we have

B(Y-a)of + u 05

rixly) - NM——s5——7 ,
B 0

(8.1)

T2
x 9 8—2+
%

Hence an "empirical" Bayes estimator of X given Y is

o~y -

oiB(y-a) + ;05

E8: (8.2)
‘2;2 . ; 2
X y
2,2 . 2 .
Note that as oy/ox + 0 (i.e., p= » 1, where p is the (true) correlation

~ - ~

coefficient of X and Y), this estimator -+ (y-a)/B (B = 0), the classical
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Et (1) the inverse

E2 (ii) the classical

E3 (iii) estimated empirical Bayes

E4 (iv) mean of predictive distribution

ES (v) mode of predicted distribution
together with corresponding interval estimators, each of which is defined in
Section 3. The general conclusion drawn was that, with the exception of
estimator (ii), which was considerably inferior, all the other estimators
are broadly comparable in terms of predictive performance. This conclusion
is supported by the results of several previous studies.

In this section we further evaluate the performance of these estimators
by computer simulation. We concentrate in particular on the robustness of
the estimators, and on the effect of sample size on the predictive ability
of the estimators. The classical assumption is that both variables in the
calibration study have normal distributions; this is the first situation we
have studied. We have subsequently allowed for non-normal distributions for
each variable in turn, and for both together. Another factor which has
emerged as being of importance in determining the relative and absolute
merits of the different estimators is the (true) correlation between the two
variables, and the effect of this factor has also been examined.

This section is divided into two parts; the first, Section 8, is
concerned with the point estimators, and the second, Section 9, with

interval estimators.

8. COMPARISON OF POINT ESTIMATORS

18
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analysis by us for 15 other random samples of size 5 yielded an average of

just under 98% of variation explained.)

Another interesting outcome of this analysis is the relatively poor
performance of the method E for this data set. Our results confirm those of
Brown, and in fact indicate that E is worse than in his analysis.

Incidentally, an examination of the w, (weights) involved in method E

i
reveals that when we go to the multivariate case we are dealing with
extremely small numbers (<< exp(-30)) and for this reason the method may be
very susceptible to differences in computational precision in this case.
The method held up well for the wind/whitecap multivariate extension (which
involved the inclusion of additional X's) but has not performed well in this
case with the inclusion of additional Y's. This may be because the
inclusion of additional Y's increases the dimension of the regression
density function, whereas the inclusion of additional X's does not.

In fact, in view of the results presented in later sections, a number
of aspects of the analysis of this data set are not at all surprising.
Firstly, since the data indicate a very strong underlying correlation, it is
to be expected that the classical estimator will perform well. Secondly,

for the same reason, we can expect the Lwin & Maritz type estimator to

perform poorly.

7. THE SIMULATION STUDY

In Section 1, we evaluated the performance of a number of point and
interval estimators of wind speed given whitecap coverage when applied to

each of four data sets. The five estimators involved were:
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predictive capacity over the "best" univariate predictor XI(XLB)’ Among the

truly multivariate of these methods [XL.XE], the empirical X_. holds up

E
extremely well, whereas the classical multivariate again is uniformly the

worst,
In Table 4 we present the results for the Brown data:

TABLE 4

Mean Squared Prediction Error

Method »> L L' E E' LB
Variable
+
X, .003 .003 .031 017 .003
X2 .01 .0 .298 .076 041

A comparison of the columns of Table 4 confirms the result of Brown (1982)
that the methods L, LB are virtually indistinguishable in terms of
predictive performance for this data set. This is at variance with all
previous univariate results, and with the multivariate conclusions for the
wind/whitecap data. As printed out in Brown (1982), these results should be
treated with some caution, as the data are perhaps atypical in that such a
large percent of the variation is explained by the model. (Brown predicted
the x-values of 5 points using the remaining 16, and found for methods L, LB

in all cases over 98% of variation explained by the model. A similar

16
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We consider the results for the Brown data and the Wind/Whitecap data

separately. In Table 3 we present the results for the data of Section 3.

TABLE 3

Mean Squared Prediction Error

Predictor
Data Set XL XL, XLB Xg XE' XLB*
1 .095 .192 .059 .059 .056 .040
2 .550 .205 .082 079 .086 110
3 114 . 103 .066 . 061 . 060 .072
y .148 . 149 .061 .062 .062 .056

Before comparing these predictors, a number of points should be noted.
(1) XL' is simply the classical estimator when only wind and whitecap

variables are taken into account so that this is identical with the

~

estimator XC of Section 2.

-~

(if) By definition, X predicts each component of X separately and

LB

~

hence this also is the univariate XI (since Y has only one component here).

-

(iii) Included in column 6 of Table 3 is the predictor XLB*' obtained
simply by regressing the wind variable on all other variables in the
analysis [whether X or Y].

A comparison of the columns of Table 3 reveals that none of the

multivariate methods used leads to any noticeable improvement in terms of

15
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where X: is the ith observation on X and

n

Wy f(ylli)/iz1 £CLTix) (5.6)

In the case of our analysis, f was assumed to be the multivariate normal
regression density (Mardia et al. (1979), ch. 6) with parameters fixed at

their least squares values, It is, of course, also possible to obtain the
estimator XE for the problem of predicting each component of X separately,

given Y- This estimator is denoted by X following Brown (1982).

g1’
The above 5 predictors were applied to five data sets, constituted as
follows:

(a) the four data sets of Section 2, each augmented by the inclusion of
additional x-variables, viz., surface water temperature, and air temperature
[i.e., @ =1, p = 3].

(b) the data set provided in Brown (1982), Section 4, relating four
infrared reflectance responses of wheat (1) to determination of percent
water, X1, and percent protein, XZ, of the wheat [i.e., g = 4, p = 2].

The various predictors were compared using the same criteria as in
Section 2, viz., the mean-squared prediction error where one point at a time

is omitted, and then the x-value for that point is predicted using all the

remaining points for estimation purposes.

6. ANALYSIS OF RESULTS FOR MULTIVARIATE CASE
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where lo is the newly observed single value of Y which we are to use to

~ -~

predict X, and B, S are the usual least squares estimators of B, I (Mardia,
et al., 1979). Note that if we replace B, S by their univariate

counterparts, and putting a = 0 (following centering of the data) equation

(5.3) does, as expected, reduce to equation (2.2).

-~

The analysis which produces X, here performs a multivariate regression

C
of Y on X. Brown (1982) suggests an alternative predictor XL,, where in

attempting to predict a component of X (say X,) we regress Y on Xj alone,

J

and obtain XL' by a formula analogous to (5.3).

II. From multivariate regression of X on Y (denoted LB in Brown (1982))

” =1

X5 = o7 (5.4)

Note that in this case, each component of X is predicted ignoring all the
other components of X--in effect we carry out a multiple (not a
multivariate) regression of each component of X on Y.

III. A generalization of the empirical method of Lwin & Maritz (denoted E
in Brown (1982)). The extension is straightforward. Like (L) it uses
the parametric regression of Y on X and derives that of X on Y by means of
the empirical distribution of X. Specifically, if xé is a new (gx1)

observation on Y the prediction for the corresponding X' (px1) is

~

Xg = Lw, X (5.5)

-E

v owo T, g
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5. THE MULTIVARIATE CASE

Brown (1982) has studied the case p > g, not both 1, in some depth.
While most of his analysis relates to the case of controlled calibration
(i.e.,

X not random), he does devote some attention to the random

calibration situation. The model employed is a generalization of (2.1),

viz.,

1>
|
|=

(5.1)

where Y (nxq), E (nxq) and X (ﬁxp) are random matrices, and E is a
disturbance matrix from Nq(g,g). If units of X and Y are chosen so that the
variables are post hoc centered at zero, we can, without loss of generality,

rewrite equation 5.1 so that the constant term disappears and hence we have

=<
]><
|
|m

(5.2)

Brown (1982) suggests three estimators for the multivariate situation.

PN

These are analogous to the predictors X

derived as follows:

C’

-

X

I

and X

E

of Section 2 and are

-

I. From regression of Y on X (denoted L by Brown), and analagous to XC.
x. = (s ' s (5.3)
2L 22 2 2P
12
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I1. The standard 95% confidence interval based on the inverse
regression--i.e., regr.stion of U on W.

I2. An interval based on the Lwin & Maritz estimator, and using the
standard deviation of the closely related estimator E8, derived in
Section 8.

I3. An interval based on the classical estimator ;C’ and described
in Brownlee (1965)

The results are presented below:

TABLE 3

Confidence Intervals

Data Set I1 I2 13
% cov Av length % cov Av length % cov Av length
1 97.7 .90 97.7 .89 96.3 1.72
2 96.6 1.04 94.6 1.01 95.6 2.23
3 89.2 .96 94.6 .95 90.3 1.84
4 93.5 .96 92.3 .96 9y, 2 1.62

In general, intervals I1 and I2 are very comparable. The analysis was
performed, as in the case of point estimation, by omitting each point in
turn and constructing a confidence interval based on an analysis of all the

remaining points of the data set.




TABLE 2

Mean~Squared Prediction Error .

Estimator

c I Xg ME MO

1 .192 .059 .056 .060 .060

>
»
ta]
<

Data Set

This table shows that in terms of average squared prediction error, the

classical predictor is once again uniformly the poorest, having mean

prediction error in the range 2 to 3 times that of any of the other

estimators. The remaining four estimators are very close in terms of

predictive capacity for those data sets, with none uniformly better than the

others. Once again, a two-way ANOVA yielded the expected results.

One advantage of the Aitchison and Dunsmore method is that it

produces, in addition to the point predictions, the predictive distribution
of x given y = Yor From this it is possible to obtain shortest 100(a¥)

confidence intervals for x given y = yo.

4, INTERVAL ESTIMATION FOR THE WIND/WHITECAP DATA

For each predicted value, and for each data set, the following 95%

confidence intervals have been constructed.
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TABLE 8.3

MSE of Various Predictors

X: Normal Error: Stretched Normal
- p-squared Estimator N = 20 N = 40 N = 80
E1 1.00 0.97 0.92
" E2 3230. 46 66.92 14, 31
i E3 0.97 0.95 0.91
- .1 E4 0.98 0.97 0.92
ES 0.99 0.92 0.92
E6 0.96 0.93 0.88
* E7 0.95 0.92 0.87
E8 1.00 0.97 0.92
E1 0.56 0.56 0.52
h E2 1.30 1.19 1.07
tf: E3 0.52 0.52 0.48
- .5 EY 0.55 0.55 0.52
N ES 0.55 0.56 0.52
P E6 0.52 0.50 0.46
y E7 0.51 0.49 0.46
E:f E8 0.56 0.56 0.52
E1 0.11 0.11 0.10
E2 0.13 0.12 0.11
E3 0.15 0.11 0.10
.9 EY 0.11 0.11 0.10
E5 0.11 0.11 0.10
E6 0.17 0.12 0.13
E7 0.17 0.13 0.11
E8 0.11 0.11 0.10
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TABLE 8.4

MSE of Various Predictors

X: t, 3d.f. Error: Normal

p-squared Estimator N =20 N = 40 N = 80
E1 0.99 0.95 0.92
E2 2919.72 0.99 0.97
E3 0.92 0.93 0.97
.1 EY4 0.98 0.95 0.92
E5 0.98 0.95 0.93
E6 0.96 1.00 0.98
E7 0.92 0.95 0.96
E8 0.98 0.95 0.92
E1 0.58 0.55 0.54
E2 1.82 1.14 1.18
E3 0.61 0.58 0.56
.5 EY 0.59 0.55 0.54
ES 0.59 0.57 0.55
E6 0.72 0.70 0.68
E7 0.69 0.69 0.66
E8 0.59 0.55 0.54
E1 0.11 0.10 0.10
E2 0.13 0.1 0.1
E3 0.21 0.18 0.16
.9 E4 0.11 0.11 0.10
E5 0.11 0.12 0.10
E6 0.35 0.33 0.32
ET 0.35 0.34 0.33
E8 0.12 0.11 0.10
25
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TABLE 8.5
MSE of Various Predictors

X: t, 3d.f. Y: t, 3d.fr.

p-squared Estimator N =20 N = 40 N = 80

E1 1.09 0.87 0.87

E2 1652.77 1.00 0.84

E3 1.06 0.89 0.79

Q 1 EY 1.06 0.86 0.78

N ES 1.05 0.86 0.77

- E6 1.05 0.85 0.76

# ET 1.01 0.83 0.73

.' E8 1.09 0.88 0.78
g

B E1 0.56 0.55 0.52

ﬁ E2 2.51 1.26 0.97

E3 0.56 0.55 0.53

1 .5 EY 0.57 0.55 0.52

g E5 0.58 0.54 0.53

E6 0.66 0.61 0.63

_ ET 0.65 0.60 0.62

E8 0.57 0.55 0.52

E1 0.13 0.11 0.12

E2 0.13 0.12 0.12

E3 0.23 0.16 0.17

.9 EY 0.13 0.11 0.12

¢ ES 0.13 0.11 0.12

E6 0.59 0.50 0.47

: ET 0.58 0.50 0.46

E8 0.13 0.10 0.12
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8.3 Discussion of Simulation Results

The criterion used for comparison of estimators--the mean-squared
error--is, of course, scale dependent, and therefore the only meaningful
comparison between estimators is.the percentage difference in mean squared
error.

Looking first at Table 8.1 (X and the error both Normal), we see
that E1, E4, E5 and E8 are virtually indistinguishable in terms of
predictive performance. The Lwin & Maritz type procedures (E3, E6, and E7)
are somewhat inferior particularly for small sample size and/or large p2.
For example, for N = 20, p2 = ,9, the appropriate Lwin & Maritz estimator
(E3) is approximately 36% worse than the four "good" estimators in terms of
mean squared error. The classical estimator (E2) turns out to be just as
bad as might be expected from previous studies, although it does, as we
predicted it should, appear to improve as p2 increases.

In Table 8.2 (X Normal, error having a t-distribution), the four
estimators E1, EU4, E5 and E8 are again essentially identical in their
performance. The classical estimator is again poor, with the same proviso
as above. However, the Lwin & Maritz type estimators (ES5, E6, E7) now
perform very well, except for a combination of small N and large 92. The
superiority of the most appropriate (and best) of these estimators (E7) is
of the order of 10 to 15 percent reduction in mean squared error for p2 in
the range .1 to .5, although for larger p2 and small sample sizes this

2

difference is smaller, and in one case is reversed (N = 20, p- = .9). This

is a general pattern that has emerged: The Lwin & Maritz type estimators do

N 27
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not perform well for large 92, particularly when the corresponding sample

sizes are small.
In Table 8.3 (X still Normal, the error having even longer, more

straggling tails), the pattern is very similar to that of Table 7.2. Once

again the estimators E1, E4, E5, E8 are broadly comparable. E2 is poor, and
estimators E3, E6 and E7 are, with the type of exception mentioned above,
superior (involving a reduction of up to about 12% in mean squared error).

In the remaining tables, we allow X to be non-Normal. In the case
of Table 8.4 (X, t distribution, error Normal), estimators E1, E4, ES, and
E8 are still virtually identical. E2 is still the worst, but E3 (which one
would expect, given its definition, to be good in this case) is superior
only for small p2, and this superiority is most marked for small p2, and
this superiority is most marked for small N. For moderate p2 (.5), E3 is
‘ marginally worse than E1, E4, E5, and E8, and for large 92, E3 is distinctly
: inferior. E6 and E7 are, in general, as might be expected in this case,
very poor in their predictive capacity.

Finally, in Table 8.5 we have the case where néither X nor the
error is Normally distributed. The pattern of Table 7.6 continues here,
except that the cases where E3 is superior are even more limited, and the
inferiority of E6 and E7 for large p2 even more pronounced.

Some general conclusions can now be drawn from the combined
results:

1. For all p2, and all N, regardless of underlying distributions, the
estimators E1, E5, E6, and E8 are indistinguishable in terms of predictive

performance, when that performance is measured in terms of MSE.
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2. When both X and the error are Normal, one of the estimators Et1, EU4,
E5, and E8 should be used. The Lewin & Maritz type estimator can be
inferior in this case, particularly for large 92 and small N.

3. When X is Normal, but the error is not, the LM estimators can be
superior, except when there is a combination of high p2, and small N.
Modifying the LM estimator to take account of the form of the error
distribution (E6, E7) does lead to further reduction of the mean-squared
error,

4, When X is long-tailed non-Normal, the range of superiority of the LM
estimators is very limited--in fact it only occurs for small 02, and is most
marked for small N. Calibration is probably not a very appropriate
technique in that situation. Therefore, when X is non-Normal, one should
probably utilize one of the estimators E1, E4, ES5 or E8.

5. The estimator E8, which has not been studied before, performs very
well in general. The inverse estimator El1 performs equally well, but
estimator E8 has some appealing properties, viz.

(1) it can be derived directly from our assumptions (7.3) and

(ii) it leads to a simple and reliable confidence interval (cf.
Section 8)

(iii) Simple algebra (Appendix A) will show that E8 is essentially
almost identical with E1, thus providing justification for use
of E1.

6. Estimators EY4 and E5 also perform well, but are computationally more

difficult to obtain, and do not yield easily computable confidence

29
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intervals. However, they do give a readily computable predictive

distribution.

7. Sample size is not a major factor in the absolute size of the mean-
squared error. Reading across any of the rows of any of the tables 8.1
through 8.5, we see relatively little reduction in MSE as we go from N = 20
to N = 4 to N = 80. The reduction is certainly small compared to the
reduction as we go from p2 = ,1 to p2 = ,5 to p2 = ,9, This is not, of
course, very surprising: it merely indicates that the main determining
factor in the predictive capacity of the various calibration estimators is
the strength of the actual (linear) relationship between the relevant

variables. Nevertheless, certain ways of processing the data can have

considerable advantages.

9. COMPARISON OF INTERVAL ESTIMATORS

9.1 The Interval Estimators

Although numerous point estimators have been derived and studied
in connection with the calibration problem, the study of the interval
estimation problem has been much less extensive. In this section we
examine, again by means of simulation, the performance of a number of
interval estimators. These estimators are as follows.

1. For the point estimator E1, we use the standard 95% confidence

interval for the predicted value of X, given y = Yor viz.

L Geyp? e
e Doy —5 =) xe <t 0
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where

S, -8B S
N-2

2. Brownlee (1965) has suggested a 95% confidence interval related to the
approach of point estimator E2. This interval, referred to in the following
tables as the classical interval, has the disadvantage that it fails to
exist in certain circumstances. Its performance is examined.

3. An empirical Bayes-type confidence interval based on the derivation of

E8 is given by

E8

I+

to.025 TE——

<P

1
+
F
X

and described herein as empirical Bayes type 1.

4, Lwin & Maritz have an alternative suggested procedure for deriving an
empirical Bayes confidence interval. Three different intervals of this type
are calculated, viz.,

(i) an interval based on assuming a normal distribution for the error
term, and denoted by type 2;

(ii) an interval based on assuming a t-distribution for the error, and
estimating its variance by the standard method--a type 3 empirical Bayes

interval;
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(iii) similar to (ii), except that a maximum likelihood approach is used to
estimate the variance. This we call a type U4 interval.

All these intervals have the property (see Lwin & Maritz (1980)) that
they can be semi-infinite. As such intervals make the calculation of
average interval length impossible, and as their occurrence is rare, we omit
them from our calculations, and merely record their frequency of occurrence.
5. It is possible to construct confidence intervals based on the predictive
distribution of Aitchison & Dunsmore, but since this involves, for a single
y-value, repeated numerical integration it is omitted from the simulation
study.

9.2 Design of the Simulation Study

The design of the simulation study is identical with that in
Section 7, except that, due to the omission of the (computationally lengthy)
Aitchison & Dunsmore estimators E4 and E5, we are able to greatly expand the
number of replications at each setting of 92, N. In fact we now repeat the
experiment (of generating a sample, and 100 additional pairs of observations
for prediction based on the sample) 2000 instead of 100 times. This means
that for each 92, N configuration, we are constructing 200,000 confidence
intervals. The intervals so constructed are compared in terms of percent
coverage and average length.

The results are presented in Tables 9.1 through 9.5; these tables

have a direct correspondence with Tables 8.1 through 8.5.
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TABLE 9.1
Performance of Various Confidence Intervals
X: Normal Error: Normal

Confidence Interval

p-squared Inverse Emp. Bayes Classical

5 Sample % Av. g Av, % Av. )
p Size Cov, Leng*h Cov. Length Cov. Length exist
.1 20 94.8 4,0 93.1 3.7 9u.6 35.6 66.6
(22.7)
40 94.9 3.8 94,1 3.7 96.6 37.0 83.2
(12.1)
80 94.9 3.7 94,5 3.7 97.3 32.4 96.0
(2.9)
.5 20 94.8 3.0 93.6 2.8 96.1 6.2 (99.6)
(0.4)
40 95.1 2.9 94,4 2.8 95.7 4.y 100.0

0
80 94,7 2.8 94,3 2.7 95.0 b1 100.0

0
.9 20 94.9 1.3 93.5 1.3 95.0 1.4 100.0

0
40 95.0 1.3 ou. 4 1.2 95.1 1.3 100.0

0
80 94.9 1.2 94.6 1.2 94.9 1.3 100.0
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p squar
Sample
Size
1 20

40
80
5 20
4o
80
9 20
40
80

...........
......

ed

%
Cov.

86.9

90.6

93.5

82.7

90.2

92.6

78.8

86.3

90.5

Av,

TABLE 9.1 (continued)

Emp. Bayes 2

)

Length Exist

3.2

3.5

3.7

2.7

2.7

1.1

1.2

..............

100.0

100.0

100.0

100.0

100.0

100.0

99.0

99.8

99.8

......

Emp. Bayes 3

% Av. %

Cov. Length Exist
88.3 3.5 100.0
92.2 3.7 100.0
94.1 3.8 100.0
78.2 2.2 100.0
86.4 2.5 100.0
89.0 2.5 100.0
42.6 0.6 98.6
k5.5 0.5 99.4
46.6 0.5 99.6

34
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Emp. Bayes 4

% Av. %

Cov. Length Exist
88.5 3.5 100.0
92.4 3.8 100.0
94.2 3.9 100.0
87.2 2.5 100.0
89.7 2.7 100.0
92.3 2.8 100.0
50.2 | 0.7 98.9
55.5 0.6 99.6
59.5 0.6 99.8

......

-

4




................

TABLE 9.2
Performance of Various Confidence Intervals
X: Normal Error; t 3 d.f.

Confidence Interval

p-squared Inverse Emp. Bayes 1 Classical
Sample % Av. % Av. % Av. %
Size Cov. Length Cov. Length Cov. Length exist
o1 20 94,5 4,0 92.4 3.7 93.9 39.1 69.7
(15.1)
40 94.8 3.8 93.8 3.6 95. 4 46.8
(5.9)
80 94.9 3.7 94.3 3.6 95.9 26.1 95.5
(1.6)
.5 20 93.8 2.8 92.2 2.6 94 .1 7.3 1.3
(1.5)
40 95.1 2.8 94.1 2.7 94.7 4.6 99.7
80 95.5 2.8 95.1 2.8 95.2 4,1 99.9
.9 20 93.4 1.2 92.3 1.1 93.3 1.3 99.9
4o 94.6 1.2 94,1 1.2 94.5 1.3 100.0
80 95.2 1.2 95.0 1.2 95.1 1.3 100.0
35




Table 9.2 (continued)

p Squared Emp. Bayes 2 Emp. Bayes 3 Emp. Bayes 4
Sample % Av. ] 9 Av. ) ) Av. )
Size Cov. Length Exist Cov. Length Exist Cov. Length Exist

o 20 85.9 3.1 100.0 87.2 3.2 100.0 87.5 3.3 100.0

40 91,9 3.5 100.0 93.5 3.8 100.0 93.7 3.9 100.0

80 93.9 3.6 100.0 94.5 3.8 100.0 94.6 3.8 100.0

.5 20 82.2 2.2 99.8 75.0 1.9 100.0 77.9 2.1 100.,0

40 88.3 2.4 99.9 84.2 2.1 100.0 86.3 2.2 100.0

80 91.7 2.5 99.9 45.3 0.6 98.9 8.1 0.6 98.9

.9 20 75.9 1.0 98.6 45,3 0.6 98.9 u8.1 0.6 98.9

4o 85.9 11 99.5 50.5 0.5 99.3 54.3 0.5 99.4

80 90.5 1.1 99.9 51.5 0.4 99.7 55.7 0.4 99.7

....................................................
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TABLE 9.3
Performance of Various Confidence Intervals
X: Normal Error: Stretched Normal

Confidence Interval

p-squared Inverse Emp. Bayes 1 Classical
Sample ) Av. % Av. % Av. %
Size Cov, Length Cov. Length Cov,. Length exist
.1 20 94.5 4.0 92.6 3.7 94,2 58.7 67.5
(17.6)
40 94,7 3.8 93.8 3.7 95.3 36.7 18.6
(8.5)
80 94,9 3.7 g94.4 3.6 96.0 26.7 95.2
(2.0)
.5 20 93.8 2.9 92.2 2.7 94.1 6.3 99.1
(.5)
Lo gl . u 2.7 93.4 2.7 94,1 4,3 99.8
80 94.9 2.7 94.6 2.7 94,8 4.1 100.0
.9 20 93.0 1.2 91.9 1.1 93.0 1.3 100.0
uQ 93.9 1.2 93.5 1.2 93.8 1.3 100.0
80 94.6 1.2 94,3 1.2 94.5 1.3 100.0
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Appendix

Given y = yo, if we define E1 to be
El = a%* + B*yo
where

g* = gil and a* = ¥ - B¥y ,

using conventional notation, and E8 to be

028(y0 -a) + X o2
E8 = X . Y
32 2 N ~2
Oy oy
. S, - o~ “ Sex "2
where 8 = g—l , a = y - B x, and o, T nT7 ¢ °y
XX
then
~2
Sxx Eﬁi - sxy - _S y -8 Sxx
n-1 sxx(yo - [y - S x]) + x n-2
E8 = o
;2 sxx syy 8 Sxx
n-1 n-2

and if n is reasonably large, so that n-1 = n-2, then

e e e e e e e e e et o
RN I I SRR

NI ol F?Wm'ﬂ

(A.1)

(A.2)
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9.3.4 The Empirical Bayes (types 2-4)

In general, these intervals do not perform well, particularly in
terms of coverage. The coverage is close to 95% only for the case of small
p2 combined with large N. Otherwise the coverage is less than 95%, and in
some cases (particularly for large pz) very much less than 95%. As we have
previously noted in the simulation study of point estimators, the
corresponding point estimators also perform very poorly for the same range
of parameter values. Intervals of this type are not to be recommended.

9.3.5 General Conclusions

Of the six different intervals studied, that associated with the
inverse point estimator is uniformly the best. It is by far the most robust
to departures from underlying assumptions, and is strongly recommended for

use in construction of confidence intervals for the calibration problem.
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emerged, even in cases where the interval existed: in some such cases, the
lower interval and point given by Brownlee was larger than the upper end-
point. The percentage of such points is given in parentheses underneath the
% existence figures in each table. Once again, the problem arises
predominantly in a small 92, small N situation. To overcome this
difficulty, we interchanged the end-points when this situation arose.
Having made this adjustment, the interval does indeed give a % coverage
close to 95%. However, in terms of interval length, it performs very poorly
relative to the other intervals, with one exception. As p2 becomes large

2 = .9), the average length tends to that of the other intervals. An

(p
explanation of this behavior is provided by the fact that as p2 becomes
large (ci/oi + 0 in our model) the center point of the Brownlee interval,

viz.

T+ = E(y - a)
B to OZSXS /Z(X —X)

which in general (if we consider the average lengths of the 95% confidence

interval) is not a very good estimator, tends to

x|
+
S
'
Q>

o )

i.e., the classical estimator, E2. We have already seen that there is

reason to expect this estimator to be good for large 02.
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9.3 Discussion of the Results

We discuss each of the interval types separately.

9.3.1 The Inverse

This interval performs extremely well, both in terms of % coverage
and average interval length. Of the intervals studied it has uniformly the
shortest average length for a given level of coverage. Its robustness in
terms of coverage is very good. The actual coverage does not fall below 93%
in any of the five distributional situations considered, and for sample
sizes 40 and 80 it does not fall below 94%. For situations where X is
Normal, the coverage is very close to 95%.

9.3.2 The Empirical Bayes type 1

In terms of % coverage and average length, this empirical Bayes
interval has a performance profile very similar to that of the inverse. Its
coverage, in general, tends to be somewhat lower than the required 95%,
and the average length tends to be marginally less than that for the
inverse. 1Its robustness is very similar to that described in relation to
the inverse.

9.3.3 The Classical

This interval performs, in general, very poorly. In the first
instance, we examine the situations where it fails to exist. The final
column in each table gives the percentage of simulations for which this
interval existed. In general, no real interval existed for a large
percentage of the simulations when p2 was small (.1) and particularly so if

N was also small. The % of non-existing intervals decreased rapidly (from

c. 30-35% to 4~5%) as N increased from 20 to 80. A further difficulty also
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Table 9.5 (continued)
p Squared Emp. Bayes 2 Emp. Bayes 3 Emp. Bayes 4
Sample % Av. % % Av. ] % Av. 2
Size Cov. Length Exist Cov. Length Exist Cov. Length Exist
o1 20 86.7 3.0 99.9 88.4 3.4 100.0 88.7 3.4 100.0

4 92.3 3.5 99.9 93.6 3.8 100.0 93.7 3.9 100.0

80 93.6 3.5 99.9 94.2 3.6 100.0 94,2 3.6 100.0

.5 20 83.1 2.1 99.5 75.8 1.8 100.0 79.1 1.9 100.0
4o  89.3 2.2 99.8 84.9 2.0 100.0 86.9 2.0 100,0

80 91.6 2.3 99.8 88.6 2.0 100.0 90.2 2.1 100.0

.9 20 76.8 0.9 98.3 h4u,2 0.6 99.1 u7.8 0.6 99.2

4o  86.9 1.1 99.0 51.7 0.6 99.5 55.3 0.6 99.6

80 90.6 1.1 99.3 55.5 0.5 99.7 59.2 0.5 99.7




TABLE 9.5
Performance of Various Confidence Intervals
X: t Error: ¢t
Confidence Interval
p-squared Inverse Emp. Bayes Classical
Sample % Av. % Av. % Av. %
Size Cov. Length Cov. Length Cov. Length exist
.1 20 93.2 3.6 91.5 3.3 94.3 40.1 66.2
(16.1)
40 94.0 3.5 93.1 3.4 95.4 141.0 79.0
(9.1)
80 94. 4 3.5 94.0 3.5 95.8 27.2 93.5
(2.5)
.5 20 92.7 2.6 90.9 2.4 94.0 7.0 96.6
‘ (1.2)
40 94.0 2.6 92.7 2.5 94.5 4.5 99.2
(0.1)
80 94.0 2.6 93.6 2.5 ou.7 4,0 99.7
(0.0)
.9 20 93.1 1.2 92.7 1.1 93.5 1.3 99.9
(0.0)
4o 94,0 1.1 93.2 1.1 94,1 1.3 99.9
(0.0)
80 94 .4 1.1 94 .1 1.1 94.6 1.3 100.0
(0.0)
41
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p Squared
Sample
Size
o1 20

4o
80
5 20
4o
80
9 20
uo
80

Table 9.4 (continued)

Emp. Bayes 2

) Av. %
Cov. Length Exist
88.5 3.3 100f0
91.4 3.3 100.0
93.6 3.5 100.0
83.9 2.2 99.8
90. 4 2.4 99.9
92.0 2.5 99.9
78.8 1.0 98. 4
86.0 1.1 99.0
90.7 1.2 99.6

Emp. Bayes 3

% Av. )
Covf Length Exist
90.3 3.7 100.0
92.5 3.7 100.0
94.3 3.6 100.0
78fu 2.0 100.0
86.9 2.2 100.0
88.6 2.3 100.0
43.8 0.6 99.0
45.3 0.6 99.4
b7.1 0.5 99.8

Emp. Bayes 4
% Av. %
Cov. Length Exist
90.7 3.8  100.0
92.6 3.9 100.0
94,2 3.6 100.0
81.4 2.2 100.0
89.5 2.4 100.0
g91.4 2.5 100.0
51.4 0.6 99.2
56.2 0.7 99.5
60.6 0.7 99.2




v
e

KNOChras ( i

B et

TABLE 9.4

Performance of Various

Confidence Intervals

X: t Error: Normal
Confidence Interval
p-squared Inverse Emp. Bayes Classical
Sample 3 Av. % Av. ) Av. )
Size Cov. Length Cov. Length Cov. Length exist
.1 20 93.5 3.7 92.1 3.5 94,1 53.1 63.2
40 94,1 3.6 93.5 3.5 96.2 4o,7 79.5
(13.3)
80 94.5 3.6 9y,2 3.5 97.1 43,0 92.5
(5.2)
5 20 94.1 2.8 92.4 2.6 96.2 12.1 97.7
(2.5)
40 96.2 2.7 93.4 2.6 95.9 5.3 100.0
(0.0)
80 94.8 2.7 94. 4 2.6 95.3 4,2 100.0
9 20 94. 4 1.3 92.9 1.2 94.9 1.4 100.0
(0.0)
40 94,9 1.2 94,0 1.2 95.2 1.4 100.0
(0.0)
80 94.7 1.2 94,3 1.2 95.0 1.3 100.0
(0.0)
39




p Squared
Sample
Size
o1 20
40
80
8 5 20
h 40
[j 80
.
.
.
- 9 20
-
.- 40
? 80
E;
..

Table 9.3 (continued)

Emp. Bayes 2
% Av. )
Cov. Length Exist
85.5 3.1 100.0
90.7 3.4 100.0
93.3 3.6 jO0.0
82.3 2.3 99.9
88.0 2.4 100.0
91.9 2.6 100.0
77.3 1.1 98.9
86.5 | 1.2 99.5
90.0 1.2 99.9

Emp. Bayes 3
% Av. ?
Cov. Length Exist
87.5 3.3 100.0
92.6 3.7 100.0
94,3 3.9 100.0
76.9 2.1 99.9
83.4 2.1 100.0
89.1 2.3 100.0
48.1 0.6 99.8
51.4 0.5 99.2
53.9 0.4 99.8

Emp. Bayes U4
% Av. %
Cov. Length Exist
87.7 3.4 100.0
93.8 3.7 100.0
94.3 3.9 100.0
79.4 2.2 100.0
90.7 2.5 100.0
90.7 2.5 100.0
50.8 0.6 98.9
55.9 0.6 59.u
58.9 0.6 99.8
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